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LETTER TO THE EDITOR 

Collective pinning and the magnetization of the Bean 
critical state 

Henrik Jeldtoft Jensen 
Department of Malhematics. Imperial College, 180 Queen’s Gate, London SW7 2BZ. UK 

Received 17 January 1994 

Abstract The pinning force calculated from Larkin-Ovchinnikov collective pinning thwry is 
used to determined the density profile (in one, WO and three dimensions) of flu lines in the 
Bean critical state. In all oses one finds a result different from the conventional linea profile. 
The dependence of the carresponding magnetization on the external magnetic field is dculated. 
Stmng single-particle pinning leads. in three dimensions, to a behaviour distinctly different f” 
the callective pinning result. 

The purpose of the present letter is to draw the attention to the point that measurements of 
the magnetic flux profile, and the magnetization in the Bean critical state, at low magnetic 
fields are able to provide a direct test of the collective pinning theory developed by Larkin 
and Ovchinnikov. 

First some terminology. Consider a type-I1 superconductor cooled in zero external 
magnetic field to a temperature below the superconducting transition temperature. When an 
external field of strength H larger than the lower critical field H,, is applied, flux lines start 
to move into the bulk of the superconductor [I]. Inhomogeneities in the superconducting 
matrix will tend to pin the flux lines. The competion between the repulsive flux-line-flux- 
line interaction and the flux-line-pinning-centre interaction will determine the density profile 
of the flux lines when force equlibrium between the magnetic pressure (caused by the flux 
line repulsion) and the pinning force is eventually achieved. The temperature is assumed to 
be sufficently low to allow thermal activation to be neglected. This is the Bean critical state 
[2]. The density profile of the flux lines is identical to the profile of the magnetic induction 
inside the sample from which the magnetization of the sample is easily calculated. 

Consider a slab geometry with the external field parallel to the surface of the sample. 
The force balance in the Bean critical state can be written as 

Here B(x)  denotes the magnetic induction at position x inside the sample and Fp is the 
pinning force per unit volume. (The induction is related to the flux-line density n, through 
B = N,@O, where @O is the flux quantum [I].) The pinning force is connected to the 
critical current, Jc, through the expression for the Lorentz force, namely, Fp = BJJc (c is 
the velocity of light). In the traditional treatmeant of the Bean critical state, one assumes 
that J, is a space- and field-independent constant when one solves equation (1) [l]. This 
leads immediately to the solution 

(2) 
X 

B ( x )  = H (1 - n). 
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Here H is the external field and A = c H / 4 z J c .  When one substitutes this expression for 
the induction into the expression for the magnetization 

M = &6”(..) - H ) d x  (3) 

one obtains for fields larger than the penetration field, Hp, the well know result M = 
d J , / k c  [l]. A field dependence of M is conventionally obtained by including, at this 
level, a field dependence of Jc obtained from some pinning model [3]. This is clearly a 
somewhat arbitrary way to determine the field dependence of M. One should rather solve 
equation (1) including the field dependence of Fp directly. This is what we are going to do 
below. 
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Figure 1. A slab of thickness equal to 2d i s  placed in an extemal magnetic field parallel to 
the surface of the sample (.z is measured in units of d). The profile of the magnetic induction 
is sketched for different values of the external magnetic field. (a) conerponds to 01 = 114 
(collective pinning with shear and tilt). (b) comsponds to CL = 4/5 (amorphous lattice limit). 

Tang [4] and Barford, Beere, and Steer [5] have presented simulations of o n e  
dimensional particle models for which the linear density profile (obtained from the 
assumption that Fp is proportional to the particle density) does not apply. Both simulations 
find a parabolic profile 

where A is the distance the pinning potential allows the particles--or flux lines-to penetrate 
into the sample. This behaviour is obtained from equation (1) if one assumes Fp to be 
independent of the density. Tang has shown that a density-independent pinning force is in 
fact obtained from the Larlrin-Ovchinninkov (Lo) theory of collective pinning 161 applied to 
one dimension. However, as we will see below, the result for collective pinning is, in one 
dimension, the same as the result for strong singleparticle pinning. Fortunately, in higher 
dimensions the two cases lead to distinguishable behaviour of the density profile. 

Below we derive the form of B(x)  using elasticity theory. We apply the theory to 
two- and three-dimensional flux-line systems. We find that the induction in an infinite slab 
geometry, see figure 1, varies with distance x from the surface as 

x a  
A 

B(x)  = H (1 - -) (5 )  

where the length scale A is given below 171. 
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The exponent depends on dimension and on the type of elastic deformations induced 
by the pinning potential. In one dimension (Y = 1/2, in two dimension (Y = l/2 for an 
incompressible flux system. If compression is relevant one finds that a = 215. In three 
dimensions the value for a flux system which only allows shear and tilt deformations is 
a = 1/4. When compression is included the exponent changes to (Y = 1/5. For an 
amorphous flux lattice a = 4/5. In the limit of strong single-particle pinning a = 1/2 in 
any dimension. The corresponding magnetization, M, varies for fields smaller than the field 
at which the sample becomes fully penetrated as M - HI+'/" and for fields H z Hp as 
M Y H'-'/a.  

We now describe how these results are derived from equation (I) by assuming that Fp 
can be calculated from the LO theory of collective pinning [6] .  

The LO collective pinning theory consists of two assumptions. First one assumes that 
the total pinning force acting on a certain correlated subvolume, V,, of the flux system is 
given by the fluctuations in the sum of the forces from the active pinning centres within the 
volume V,. The probability for a centre to be active, i.e. to exert a force on the flux lattice 
is given by the probability of a flux line to be within the range R, of the pinning centre. 
Hence, only the fraction nV$ of the total number of Vcn, pinning centres are active (n, 
denotes the number of pinning centres per unit volume). The fluctuations in the sum of 
these pinning c e n m  are given by 

(6) 

Here (p) denotes the fluctuations in the force exerted by one pinning centre on one flux 
l ie .  (fj) is independent of n, [SI. The pinning force per unit volume is 

(KnpnvR& 2 )) i j 2  . 

Fp = ( n p n ~ R ~ ( f o ) / v ~ ) ' ~ * .  (7) 

The second assumption concerns the determination of V,. One assumes that the 
correlated volume is given by optimizing the competition between the elastic strain energy 
induced by the relaxation to the pinning centres within the volume V, and the gain in pinning 
energy obtained due to the relaxation 161. The strain of the induced elastic deformations 
is estimated by R, /L  where L is one of the linear dimensions of the volume V,. Let us 
consider the most general threedimensional case. The total energy per unit volume of the 
volume V, is given by 

(8) E = ~CI~(R,/RU)~ + f C 6 ( R p / R ~ ) '  + $ h ( R p / L c )  - RpFp. 

The first three terms correspond to the compression, shearing and tilting of the volume 
V, = R I I R ~ L , .  CII is the compression modulus, Ca the shear modulus, and C, the tilt 
modulus. The density dependence of the elastic coefficients for small fields is given by 
C I ~  - n:, C, - n:, and Cs - ny [9]. 

One determines V, by minimizing E with respect to RI,,  R I ,  and L,. The expression for 
the pinning force is obtained by substituting the value for V, found from this minimalization 
info equation (7). We ~ t e  the result as Fp = A/nC. Here A is a factor independent of the 
flux-line density. A will of course depend on material properties, dimension and the type 
of relevant elastic deformations. The value of 0 depends (see below) on dimension and 
on the type of deformations induced by the pinning centres. The induction is immediately 
found to be of the form given in equation (5)  with a = 1/(2 + p) and A = C Y H ' / ~ / ~ Z A .  
The magnetization is found from equation (3) to behave as 

2 
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for H < H,,. For fields above the penetration field one has 

The expression in equation (10) behaves for H > (4nAd/a)" as M - H'"'=. 
We now discuss the solution of equation (1) in different regimes. Table 1 contains the 

values of the the exponent a for dimensions one, two, and thee and for different types of 
deformations of the flux system. The solution for B ( x )  and M ( H )  is shown in figures 1 
and 2 for different values of a. 

Table 1. The exponent U of the density profile given by equation (3) for different types of 
elastic distortions of the flux system. A precise definiton of the the different cases is given in 
the text after equation (7). 

Shear t Amorphous Strong 

Dimensions Compression Shew compression tilt compression limit pinning 
Shear + shear+ tilt + lattice single-panicle 
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Fkwe 2. Magnetization. as given by equations (6) and (7). for the values U = 114. 112, 415, 
relevant to h e  dimensions. We have put 4nAd = 1.  

Equation (8) describes a three-dimensional system for which shear, tilt, and compression 
are equally relevant. The correlated volume is given by V, = R I R ~ L , .  The exponent p is 
found to be equal to 3 which gives a = 115. 

The compression modulus is often much larger than the shear and tilt moduli. This is in 
particular the case for homogeneous deformations of the flux-line lattice. In this case it is 
more appropriate to exclude the term proportional to C I ~  from equation (8). The correlated 
volume is then given by V, = RfL, .  One finds @ = 2 and a = 1/4.  

As the strength of the pinning centres increases RI decreases. When R s  becomes 
smaller than the average distance, 00 = I/&, between the flux lines the correlated volume 
becomes equal to V, = a&. In this l i t  L, is determined from equation (8) by neglecting 
the compression and the shear term. One finds ,5 = -3/4 and a = 4 / 5 .  
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Finally we consider the case of strong pinning centres which are all able to overcome 
the elastic restoring forces and therefore pin with a maximum pinning force fo. The volume 
pinning is in this case Fp = np fo. That corresponds to f3 = 0 and or = l/2. This result is 
obviously independent of dimension. 

To apply equation (8) to two dimensions one neglects the term describing the tilt. The 
correlated volume in the case where C11 N c66 is given by V, = RIRII .  The exponent f3 is 
found to be equal to l/2 and 01 = 2/5. If C11 >> c66 we have V, = Rf. The corresponding 
exponents are f3 = 0 and or = 1/2. 

In one dimension only compression can occur. The correlated volume is given by 
V, = RI. The length scale RA is found f” equation (8) by leaving out the terms 
proportional to Ca and CN. One finds f 3 =  0 and 01 = 1/2. 

The Bean critical state hypothesis [2] as given by equation (1) was combined with the 
Larkin-Ovchinnikov theory of collective pinning [6] to determine the flux profile in the 
Bean critical state. An algebraic profile 

B ( x )  - (1 - ;y 
with or < 1 was found in all cases.The prediction of the theory in one dimension is in 
agreement with recent simulation results [4, 51. 

Low-field decoration experiments or magnetization measurements on three dimensional 
samples should easily be able to distinguish between the predictions of the collective pinning 
theory (01 = 1/4, only shear and tilt assumed to be relevant), the linear Bean profile (or = I), 
and the result for strong singleparticle pinning (or = 1/2). 

It is a pleasure to acknowledge inspiring discussions with Chao Tang, Benoit Doucot, 
and William Barford. The hospitality of the Institute for Scientific Interchange, Torino, is 
gratefully appreciated. 
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